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ABSTRACT

The electromotive force of the buffered cell: Pt, H, (gas. 1 atm): HOAc (m;), KOAc
(m,). KI (m,), solvent: Agl, Ag, in propylene glycol (PG) and in 19 PG + water solvent
mixtures has been measured at 5°C intervals from 0 to 55°C. The values of the standard
potentials of the silver—silver iodide electrode have been determined in these solvents at the
indicated temperatures. The standard potential in each solvent has been expressed as a
function of temperature. The standard thermodynamic functions for the cell reaction and the
standard thermodynamic quantities for the transfer of 1 mole of HI from water to the
respective solvents have been evaluated. The results are interpreted in terms of the acid-base
properties of the solvents as well as the preferential solvation of 10ns.

INTRODUCTION

Electromotive force measurements on galvanic cells involving hydrogen,
silver—silver halide electrodes, with or without the buffer solutions, have
been widely used in recent years [1-7] to determine the thermodynamics of
hydrogen halides in aqueous and non-aqueous media. The study of the
thermodynamic properties of hydriodic acid in such media has recently been
a subject of interest. The standard potentials of silver—silver iodide elec-
trodes and related thermodynamic quantities in non-aqueous propylene
glycol (PG), determined from the EMF measurements of the buffered cells
at 5-45°C, have been reported by Kundu et al. [3]. Despite the well-known
industrial and pharmaceutical applications of the primary-secondary dihy-
dric alcohol, PG, as a solvent [8,9], no EMF data, and thus no electrochemi-
cal thermodynamic quantities for HI, have so far been reported in aqueous
mixtures of PG.
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Thus, as a part of a comprehensive study on the standard potentials of the
silver—silver halide electrodes in both aqueous and non-aqueous media
[6,7,10,11], the authors have undertaken to determine the standard potentials
of the Ag-Agl electrode in 19 PG + water solvent mixtures as well as in
non-aqueous PG at 12 different temperatures in the range 0-55°C. This
wide temperature range is sufficient to yield better accuracy in the calcula-
tion of the thermodynamic properties that are dependent on the temperature
coefficient of the EMF. Thus, a comprehensive understanding of the thermo-
dynamic properties of hydriodic acid in these media can be obtained.

Measurements of the EMF of cells of the type

Pt, H,(gas, 1 atm): HI (m), solvent: Agl, Ag (1)

showed a slow variation in the observed EMF with time, especially for
PG-rich solvents at high temperatures. Similar observations were reported by
Kundu et al. [3]. Their preliminary experiments with HI solutions in PG
indicated a gradual drift in the observed EMF values. This was ascribed to
the slow reaction of the acid with the solvent forming halohydrin, and also
partly to the oxidation of HI [3]. Hence, the method of using cell (I) was not
considered suitable.
On the other hand, EMF measurements using buffered cells of the type

Pt, H,(gas, 1 atm): HOAc (m,), KOAc (m,), KI (m,), solvent: Agl. Ag
(IT)

showed that these cells function better for this system than the unbuffered
cells. Therefore, the EMF measurements of the buffered cells have been used
for the determination of the standard potentials of the Ag—Agl electrode in
PG + water solvents.

EXPERIMENTAL

Acetic acid (Merck) was further purified as described elsewhere [3].
Potassium iodide (Merck) was dried at 200°C for 2 h and kept in a vacuum
desiccator before use. Redistilled deionized water which had a conductivity
of 0.7x10°° Q"' cm™' was generally used in the preparation of various
aqueous solutions. PG (BDH, AnalaR) was further purified as described
earlier [5]. The characteristic physical properties of the product agreed well
with those reported elsewhere [4] for pure PG. Because of the highly
hygroscopic nature of PG [4,8,9], the distilled glycol was kept in an atmo-
sphere of dry argon, freshly redistilled and used within a few hours. Care
was always taken during all the operations to avoid exposure of the solvents
and solutions to the atmosphere as far as practicable.

The experimental methods and procedures, such as those employed for
the preparation of hydrogen and silver—silver iodide electrodes, preparation
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of cell solutions of the required ionic strengths in the respective solvents.
setting up of the cells and measurements of EMF. were similar to those
described in previous studies [3.12]. The electrodes having bias potentials of
the order of 0.1 mV were used, and these were preserved over the respective
solvents and kept in the dark when not in use. The molalities of HOAc.
OAc™ and I solutions were in the range 0.005-0.05 mole kg~ '. The PG
content of all the solutions reported was accurate to +0.05 wt.%. All
solutions were freshly prepared before taking measurements. The EMF
measurements were made with three hvdrogen electrodes and three
silver-silver iodide electrodes for each solution. The cells were thermostated
at each temperature with an accuracy of +0.01°C. The behaviour of the
electrodes in the buffer mixtures was excellent and consistent within +0.1
mV.

As a precaution, a given cell was never measured over the entire tempera-
ture range. Three series of results were made at each acid concentration. The
first was from O to 20°C. the second from 15 to 40°C and the third from 35
to 55°C. As new solutions were prepared for the measurements in each. the
results serve as an excellent means of checking the reproducibility of the
procedure. The EMF values were generally reproducible to +0.2 mV for
different solutions. The cell measurements were made in triplicate. and the
mean values of these observations recorded. The triplicates generally agreed
within +£0.2 mV. The EMF data observed in the various solutions were
corrected in the usual way to | atm hydrogen pressure. The phvsical
properties of the solvents over the temperature range 0-55°C were derived
from previous data [4.9,13].

RESULTS AND DISCUSSION

The EMF ( E') of the buffered cell (II) is given [3.12] by
E=E)—klog K,— klog(a,a,/a,) (1)

where E}, is the standard EMF of the cell. which is the standard potential of

the silver-silver iodide electrode on the molal scale. K, is the dissociation
constant of acetic acid in the particular solvent at the corresponding temper-
ature, k is (RT In 10) /F. a 1s the activity and the subscripts 1, 2 and 3 refer
to HOAc, OAc™ and 17, respectively. The extrapolation function £’ given
[3,12] by

E'=E—k(pK,)+k log(mm,/m,) = E; — k log(v,v:/7,)
=E° + f(u) (2)

was constructed for each solvent at each temperature, where the symbols
have their usual significance [3,12]. The pK, values of acetic acid in the
respective solvents in the same temperature range, determined earlier [3.11].
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were used for evaluation of E’. The plotting of the functions E’ against ionic
strengths (1) of the corresponding systems resulted in straight lines, which
on extrapolation to ¥ = 0 by the method of least squares gave the intercepts
equal to the EY values of the Ag-Agl electrode in each solvent at each
temperature. The E2 values in PG + water solvents as well as in non-aque-
ous PG are summarized in Table 1, together with the values for water as the
solvent [10]. The values of E?, presented in Table 1, are accurate to better
than +0.1, +0.2 and +0.3 mV for solvents containing 5-45, 50-75 and
80-100 wt.% PG, respectively.

It is seen, from Table 1, that the E2 values are all negative and decrease
with an increase in either temperature or PG content in the solvent, i.e. with
a decrease in dielectric constant of the medium.

The values of E° (in abs. volts) obtained at 12 different temperatures for
each solvent (Table 1) were fitted by the method of least squares to a

TABLE 2

Values of the parameters a, b and ¢ of eqn. (3) for evaluation of EC in propylene
glycol + water solvent mixtures from 0 to 55°C, and the standard potentials of the Ag-Agl
electrode on the molar concentration, E2, and mole fraction, EY. scales at 25°C

Wt.% -10%a 1045 10¢ ¢ - E? - EY
PG 4%} (VK™Y (VK™% ™) V)

0 15.237 3.191 2.731 0.15252 0.35877

5 15.367 3.267 2.731 0.15365 0.35807
10 15.491 3.331 2.739 0.15469 0.35722
15 15.623 3.415 2.741 0.15580 0.35638
20 15.761 3.472 2.774 0.15697 0.35549
25 15.897 3.568 2.790 0.15811 0.35448
30 16.039 3.658 2.835 0.15932 0.35342
35 16.198 3.773 2.871 0.16071 0.35240
40 16.359 3.893 2.929 0.16214 0.35127
45 16.543 4.029 2.990 0.16382 0.35020
50 16.769 4.192 3.064 0.16594 0.34938
55 16.994 4.353 3.173 0.16808 0.34835
60 17.278 4.571 3.300 0.17083 0.34770
65 17.582 4,828 3473 0.17382 0.34699
70 17.958 5.161 3.693 0.17755 0.34671
75 18.448 5.609 4.083 0.18245 0.34722
80 19.136 6.274 4.429 0.18935 0.34929
85 20.209 7.308 4.265 0.20013 0.35472
90 22.003 8.888 3.872 0.21814 0.36675
95 25.529 10.957 3.046 0.25351 0.39532

100 34.670 13.790 1.431 0.34506 0.47905
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quadratic equation of the form
E%=a—b(T—298.15) — ¢(T — 298.15)° (3)

where T is the thermodynamic temperature. The parameters a, b and ¢ are
recorded in Table 2, for each solvent, along with the values for water as the
solvent [10]. The maximum difference between the experimental values of £
(Table 1) and those computed by eqn. (3) at the 12 temperatures is 0.13 mV
for the various PG + water solvents.

The values of E?, obtained by Kundu et al. [3], for the Ag—Agl electrode
in the non-aqueous PG solvent are now compared with the corresponding
new values obtained in the present work. These values are —0.3197, —0.3258,
—0.3332, —0.3399, —0.3468, —0.3535, —0.3609, —0.3676 and —0.3749 V
at 5, 10, 15, 20, 25, 30, 35, 40 and 45°C, respectively. There is an excellent
agreement between eight from nine values. The differences range from 0.02
to 0.18 mV, except at 10°C where the difference is 0.44 mV. The more
negative value of E? obtained in this work at 10°C indicates that the
solvents used in previous studies were not dry enough [3]. This may be so in
view of the highly hygroscopic nature of PG [4,8.9].

The values of the standard potentials on the molar and mole fraction
scales, E? and EY,, respectively, were computed at 25°C with the help of the
usual relations [6,7], and are also included in Table 2. It is evident from
Table 2 that the values of E? and Ey, are all negative. The values of E
decrease, while the EY values increase to a maximum at around 70 wt.% PG
and thereafter decrease, with increasing PG content in the solvent.

Standard thermodynamic functions for the cell reaction

The standard electrode potentials of cell (II) and their temperature
coefficients are essentially related to the standard free energy, enthalpy and
entropy changes (AG°, AH® and AS?) involved in the cell reaction

3 H,(gas, 1 atm) + Agl (s) = Ag (s) + HI (solvated) (4)

Hence, the standard changes of free energy could be calculated from the
relation

AG® = —nFE} = — Fla—b(T—298.15) — (T - 298.15)* (5)

The calculated values of AG® are accurate to +29 J mole ', The standard
thermodynamic functions of the cell were computed at 5-55°C by applying
the usual thermodynamic relations [6,7] to eqn. (5) and these are recorded in
Table 3, where all refer to the molal scale.

As can be seen from Table 3 the standard free energy changes for the cell
reaction are all positive and increase, while the standard entropy changes are
all negative and decrease, with an increase in either the PG content in the
solvent or the temperature of the medium, i.e. with a decrease in the
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dielectric constant of the solvent. On the other hand, the standard enthalpy
changes, which decrease with increasing temperature in any solvent, appear
to be positive for water-rich solvents at lower temperatures and negative for
PG-rich solvents at high temperatures. At 5-35°C the values of AH°
decrease, while at 45-55°C the AH? values decrease to minima at around 90
wt.% PG and thereafter increase, with increasing PG concentration in the
solvent. This may be due to some structural effects which can arise from the
solvent properties and/or from the solvation properties of the ions in the
different solvent mixtures.

Standard thermodynamic quantities for the transfer process

Since the solvent effects on the thermodynamic properties of HI related to
the present study will be best reflected in the standard free energy (AG,),
entropy (AS/), enthalpy (AH/) and heat capacity (AC,) changes accompa-
nying the transfer of 1 mole of HI from water (w) to each of the solvents (s)

HI (in water) = HI (in respective PG + water solvents) (6)

these quantities were evaluated from the temperature variation of standard
EMF of the cell on the mole fraction scale.

Ey=a —bT—-cT? (7)
As before [4-7,10-12], the mole fraction scale has been used, because that
will eliminate effects arising from concentration changes of HI accompany-

ing the transfer process and will reflect solvent effects more clearly, a
contention that has recently been shown to be true in various non-aqueous,

TABLE 4

Values of the parameters a’, b’ and ¢’ of eqn. (7) for evaluation of EY 1n propylene
glycol + water solvent mixtures from 0 to 55°C, and the values of the parameters 4, B and C
of eqn. (8) for evaluation of the thermodynamic quantities for transfer of HI from water to
propylene glycol + water media

wt% —10%2a° —10*p  10%¢ 107%4 B 102 C
PG V) (VK™ (VK™% (mole™') (JK 'mole™') (JK Zmole™")
0 30.000 13.094  2.731

10 29.908 13.002  2.739 —0.891 0.430 0.077
20 30.004 13.069 2.774 0.039 2.520 0.415
30 30.334 13.247  2.835 3.225 5.805 1.003
40 30.789 13.573  2.929 7.614 10.676 1.910
50 31.507 14.079  3.064 14.547 17.496 3.213
60 32.984 15.107  3.300 28.797 29.607 5.490
70 35.399 16.860  3.693 52.092 49.048 9.282
80 39.801 20.136  4.429 94.566 83.630 16.383
90 29.923 14201  3.872 —0.741 29.992 11.009

100 6.276 -5.257 1431 —228.900 —153.096 ~12.543
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and aqueous organic mixed solvents [3.4,6,7]. The standard changes of Gibbs
free energy can thus be represented as a function of temperature (in K) by

F("EY—°ES)=AG’=4 - BT+ CT? (8)

The least-squares values of the parameters of eqns. (7) and (8) are given in
Table 4. The proper choice of a function to express the thermodynamic
quantity as a function of temperature has been discussed in some detail by
Ives and Marsden [14]. The standard transfer thermodynamic quantities
were obtained by applying the usual thermodynamic relations [6.7] to eqn.
(8). The data calculated at 5-55°C are presented in Table 5. The values of
AG) are accurate to + 58 J mole™ "

It is known that the Gibbs energy of transfer is an important index of the
differences in interactions of the ions (e.g. H* and I7) and the solvent
molecules in the two different media. It is evident from Table 5 that the
Gibbs free energy of transfer has negative values. which increase in magni-
tude as the proportion of PG increases, and after passing through minima (at
around 70 and 60 wt.% PG at 5-45 and at 55°C. respectively) ultimately go
over to positive values. Thus, although the transfer of HI from water to
PG-rich media is non-spontaneous, the process is thermodynamically
favourable so long as the extreme PG-rich region is not reached. and the
spontaneity of transfer increases to a maximum at around 60-70 wt.% PG.
Thus, HI appears to be in a lower Gibbs energy state and hence. more
strongly stabilized in the 60-70% PG solvents. i.e. these solvents are the
more basic media. On the other hand, the positive values of AG! for the
PG-rich solvents lead to the conclusion that hydriodic acid is in a lower
Gibbs free energy state in water than in such solvents. In other words, the
affinity of such solvents for HI is less than that of water. Water is thus more
basic than the PG-rich solvents. Thus, the basicity of PG + water solvents
appears to increase to a maximum at around 60-70 wt.% PG and thereafter
decreases, with increasing PG concentration in the solvent. Similar behaviour
was also observed by Kundu et al. {12] in their studies of HI in ethylene
glycol + water solvents.

The values of the transfer entropy and enthalpy reflect the complicated
nature with regard to the contributions from the effects of the ions on the
structure of the solvents. As can be seen from Table 5, the standard entropy
(which has very small values and changes little in the water-rich solvents)
and enthalpy of transfer to aqueous solvents decrease, while those for the
transfer to the non-aqueous PG increase, with increasing temperature of the
medium. The values of AH? are all negative and decrease at the lower
temperatures (5-35°C), whereas those at the higher temperatures (45-55°C)
decrease, passing through minima at around 90 wt.% PG and thereafter
increase, with increasing PG content in the solvent. At the lower tempera-
tures (5-15°C), the values of AS? (which are positive for the extreme region
of water-rich solvents) increase to positive maxima at around 20-25% PG
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and thereafter decrease, whereas those at the higher temperatures (25-55°C)
decrease, with increasing PG concentration in the solvent.

The values of AH? and AS could provide an insight into the solvent
structure. The transfer process of ions from water to a mixed solvent
includes a number of changes connected with building up and breaking
down the structure [12,15]. Further, the structure-forming processes are
exothermic and accompanied by a decrease in entropy. and the structure-
breaking processes are endothermic and lead to an increase in entropy. The
negative and decreasing values of AH? and AS? assume that ions are more
effectively breaking the water structure than in the glycolic solvent. Water is
therefore a more structured solvent than the PG + water solvents. On the
other hand, the positive values of AS? for the extreme region of water-rich
solvents at 5-15°C indicate that these solvents are more structured than
water in this temperature range.

The values of the heat capacity (ACPO) decrease, pass through minima at
around 80 wt.% PG and thereafter increase, with increasing PG content in
the solvent, at any temperature. For the aqueous solvents the values of ACF?
are negative and decrease, whereas those for the non-aqueous PG solvents
are positive and increase, with increasing temperature of the medium.
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